I gave a tutorial talk on “Plasmons, SERS and more”: at National Workshop on Fluorescence and Raman Spectroscopy
Below is the embedded file of the presentation
I gave a tutorial talk on “Plasmons, SERS and more”: at National Workshop on Fluorescence and Raman Spectroscopy
Below is the embedded file of the presentation
We have new paper appearing in Applied Physics Letters on how a dielectric microsphere placed on a 2D material deposited on a mirror can act as an optical antenna (see left panel for the schematic of the geometry and an optical image of the realized antenna).
The experimental and simulation efforts were mainly driven by our dynamic PhD student Shailendra Kumar Chaubey, who is very passionate about nanophotonics of 2D materials. He along with Sunny Tiwari and Diptabrata Paul explicitly show how experimental parameters such as sphere size and location of focusing can influence the photoluminescence emission from a WS2 monolayers. The experiments were mainly possible thanks to our collaboration with my colleague Atikur Rahman and his student Gokul, who continue to produce fantastic 2D materials for our nanophotonics study.
Interestingly, the emission from the WS2 monlayers can be as narrow as 4.6 degrees (see right side panel of the figure) which is one of the narrowest angular spread at room temperature. We also capture the energy-momentum photoluminescence spectra from WS2 monolayers, which is convoluted with the beautiful whispering gallery modes of the microsphere (see parts (a) and (d) of the figure).
We envisage such ’emission engineering’ using a simple microsphere can be further harnessed to control emission from quantum and nonlinear photonic 2D materials. Also, it raises new questions on how local photonic density of states can be tailored by altering the local environment around quantum emitters in solid state materials.
Arxiv version of the paper : https://arxiv.org/abs/2110.10387
https://link.springer.com/article/10.1140/epjs/s11734-022-00511-y
A nanowire kink on a mirror can influence light scattering wavevectors and direct photoluminescence from a monolayer of a 2D material at sharp angles.
Shailendra, Sunny Tiwari , Asutosh from my group in collaboration with my colleague Atikur and his student Gokul show this unconventional nanowire antenna concept, experimentally.
The link to publication in European Physics Journal: Special Topics is above. This paper is part of a special issue on Photonic Materials
Arxiv link : https://arxiv.org/abs/2203.00391
We have a new publication in Journal of Physical Chemistry Letters on the “Beaming Elastic and SERS Emission from Bent-Plasmonic Nanowire on a Mirror Cavity”
In short, we show, how by bending a nanowire we can narrowly beam the light scattered from molecules (see adjoining picture).
Optical emission from quantum objects such as atoms and molecules are very sensitive to their local surroundings. One of the current challenges in controlling optical emission from molecules at subwavelength scale is to narrow their scattering directivity. In the context of molecules, controlling light scattering at sub-wavelength scale has utility in optical trapping of molecules, molecular QED, cavity molecular mechanics, molecular quantum optics and many other areas of research.
Thanks to the great effort by Sunny Tiwari in my lab, who in the middle of the pandemic, tirelessly executed the idea of beaming elastic and Raman scattering emission from molecules in the vicinity of a bent plasmonic silver nanowire resting on a metallic mirror. He was ably supported by Adarsh (now at ETH), Dipta and Shailendra. Together, they experimentally confirmed the beaming characteristics from this geometry and corroborated with elaborate numerical simulations.
This work further motivates questions related to directivity control for single photon emitters and can be potentially harnessed for momentum-space engineering of nano-optical forces……
we say bend the light like a nanowire…
DOI of JPCL article : https://doi.org/10.1021/acs.jpclett.1c01923
arxiv version : https://arxiv.org/abs/2106.09347v1
We have a new paper in Materials Research Bulletin to be published in a special issue on Recent Advances in Functional Materials
The paper is about “Sub-wavelength plasmon polaritons channeling of whispering gallery modes of fluorescent silica microresonator”
Individual spherical objects, such as a silica-microsphere, when excited with a laser under certain conditions, exhibit a set of optical resonances called as “whispering gallery modes” (WGMs). These modes are very sharp (high Q value) and can be harnessed as optical resonators. An interesting prospect is to channel the WGMs through a nanoscale plasmonic waveguide, such as a single silver nanowire, and study the optical emission.
Motivated by this prospect, Sunny Tiwari and Chetna Taneja from my group experimentally show how to channel WGMs through a plasmonic silver nanowire waveguide. They go a step ahead and show the spectral and angular characteristics of such a hybrid optical system. These experiments motivate further questions related to micro-resonances and angular spectrum distribution in dielectric-plasmonic hybrid systems, and can be harnessed to design compact micro-lasers and on-chip couplers. With some effort, they can also be optically trapped and manipulated.
arxiv link to the paper : https://arxiv.org/abs/2105.10698
DOI of the published paper: https://doi.org/10.1016/j.materresbull.2021.111412
There is no Frigate like a Book
To take us Lands away
Nor any Coursers like a Page
Of prancing Poetry –
This Traverse may the poorest take
Without oppress of Toll –
How frugal is the Chariot
That bears the Human Soul –
Generally speaking, scientists are natural philosophers: they observe nature, ask questions, hypothesize an answer, test them through experiments and extend this exploration by escaping into the universe of ideas in books and journals. New ideas emerge from this exploration and join the chorus, and the intellectual journey continues. In my own research on light scattering, I have been deeply influenced by ideas of various fellow-explorers. For me, journal papers and books encompass the “metaphorical oxygen” for creativity and knowledge. Below I introduce you to some classic books which keep my research alive.
If you are an Indian researcher, you cannot escape a visit to Delhi. For the last few years, I have been visiting Delhi for various research related reasons: conference, grant meeting etc. A few days ago I had an opportunity to visit Delhi for a half-a-day meeting.
For me, Delhi embodies a rich feeling of delicious north Indian (street) food, extreme temperatures (by Indian standards), loud taxi music, an assorted flavor of Hindi dialects, and of course, national politics. Of late, Delhi also has gained a lot of attention in another matter: pollution. In winters, for several years now, smog (smoke + fog) has been a major problem, and has drastically perturbed the lives of Delhi citizens. This problem is not confined to Delhi. Various parts of India are not doing great either.
Anyway, as soon I landed in Delhi, it was foggy (see picture), and the visibility was poor. Clearly, there was something in the air, and it was not pleasant. I wondered about all the kids who travel to school in such an air, and the possible effects on their health. There were several questions running through my mind: Why is the polluted air the way it is ? How does one quantify pollution? What are the effective methods to detect pollution, and how can it be contained effectively? I knew some scientific aspects of air pollution, but I was curious about how at all air quality was measured and quantified. Below are some facts related to pollution and some interesting connection to light scattering.
There are several reasons for air pollution. In India, some of the major reasons include crop and biomass burning, emission from automobiles and industries, dust etc. There are mainly 8 kinds of pollutants: PM10, PM2.5, NO2, SO2, CO, O3, NH3, and Pb. A majority of the problems are caused by the so-called particulate matter. These tiny objects which can cause severe harm to human beings can be mainly classified as PM10 and PM2.5, where PM stands for particulate matter and the numbers 10 and 2.5 represents the size of such particles in microns. To give you a comparison, the width of our hair is approximately 100 microns in thickness. So imagine a particle which is thinner than your hair entering your respiratory system. This inhalation causes severe trouble to your lungs and the worst part is that it can cause irreversible damage to the inner walls of your respiratory tracts. Even more disturbing fact is that smaller the size of the particle deeper is the penetration in to our system, and greater harm it does to human well-being.
So, how to detect these small particulate matter? There are several ways to detect these tiny objects of which I found two methods to be interesting and effective.
First one is based on light scattering. Generally, the instrument used to monitor air quality using light scattering is called as nephlometer (In Greek nephos means cloud). This is a powerful and compact instrument that can continuously detect and monitor density of particulate matter. The measurement is based on Mie scattering (named after Gustav Mie, more about him in future), where the size of the scatterer is generally comparable to the wavelength of light. It assumes that the scattering particles are spherical in nature and isotropic in composition. It works on the basic principle that when you shine light through smog (at the ground level), the intensity of the scattered light carries characteristic signature of the size of the particle and its concentration. More specifically, the intensity of the scattered light depends on two important ratios. One is the ratio of particle size to wavelength of light and second is the ratio of refractive index of the particle to its surrounding medium. By calibrating the instrument for known particles and concentrations, the unknown size and concentration of the pollutant can be determined. (If you are interested to learn more, see this old research paper). As mentioned earlier, the measurement assumes the scatterer to be spherical and isotropic, which is not the usual case in the air. So corrections due to variation in shape and compositions have to be taken into consideration in this measurement. However, one of the major advantages of this measurement is that it is quick and portable, and hence a lot of air quality measurements are based on these instruments.
Alternatively, if one needs very accurate measurement of particle size, the instrument to use is Tapered Element oscillating microbalance (TEOM). In this a tiny piece of tapered glass acts like a tuning fork. This tuning fork vibrates at a specific frequency which can be measured with reasonable accuracy. As one may guess, if something is moving, the speed of movement can be affected by adding weight on the moving object. In this case, the vibrating piece changes its frequency as soon as a small particle is in contact with it. The difference in the frequency is now related to the mass of the particle. Thus by using simple physics, one can obtain a powerful instrument to monitor air quality. Apart from the above-mentioned methods, there are various approaches to monitor air-pollution. Each of them have pros and cons, and are utilized depending on the situation.
Coming back to my Delhi trip, I finished my work, and headed towards the airport in a taxi. I casually asked the driver whether he was worried about the pollution in his city. He did mention that it was a concern, but after a brief pause he grinned and said – “odd-even phir sae shooru ho ra hain, business badega” (odd-even is starting gain, business will go up (note: odd-even was eventually stalled this time)). I grinned back at the driver, and remembered a quote of Charles Kettering : “The only difference between a problem and a solution is that people understand the solution”.