Preamble to the discovery of Raman Effect

Today is India’s National Science Day. It celebrates the discovery of Raman effect on 28th February, 1928.

For more details on the discovery of the effect, and various human aspects related to it : you can see my past blogs here, here, here and here.

In this blog, I will briefly discuss about some of the work that directly influenced Raman’s thinking that further led to a remarkable discovery that we know by his name.

All creative pursuits are motivated by ideas from the past. No one gets their ideas in vacuum. All of us are influenced by the information which we perceive and receive. This means consciously or subconsciously the world that we are creating, both in our minds and in reality, is fundamentally influenced by the information in the world.

The discovery behind the Raman effect is no exception to this particular principle. In his formative years, C V Raman was heavily influenced by the research of Rayleigh and Helmholtz, and some classical thinkers including Euclid. Raman was also closely following the development of quantum mechanics in the early 1920s, and he was keenly studying the theoretical and experimental developments in this field.

Two aspects which played a crucial role in motivating Raman’s (Nobel prize winning) work was Compton scattering and Kramers-Heisenberg formula.

Compton scattering was as outstanding experimental achievement that revealed two aspects of light-matter interaction. First, it demonstrated inelastic scattering of electromagnetic radiation interacting with a quantum object (in this case free electrons) in the laboratory frame. Second is that it laid a foundation to revisit the wave-particle duality of light from an experimental viewpoint. Raman and Krishnan’s main paper on light scattering starts by explicitly referring to Compton effect, and motivates observation for optical analogue of Compton scattering.

To quote from Raman’s Nobel lecture :

“In interpreting the observed phenomena, the analogy with the Compton effect was adopted as the guiding principle. The work of Compton had gained general acceptance for the idea that the scattering of radiation is a unitary process in which the conservation principles hold good.”

Next is the Kramers-Heisenberg formula. This mathematical description gives the scattering cross section of a photon interacting with a quantum object (in this case electron). This formula uses second-order perturbation theory, and evokes the famous ‘sum of all the intermediate states’ for non-resonant optical interaction. PAM Dirac played a vital role in deriving this formula from a quantum mechanical framework of radiation. An important and logical consequence of this formula is the emergence of stimulated emission of radiation, and this has had deep implications in understanding LASERs. Raman was keenly studying the formula and made a brilliant conceptual connection between laboratory observation and this formula that revealed the scattering cross-section.

Again to quote from Raman’s Nobel lecture:

“The work of Kramers and Heisenberg, and the newer developments in quantum mechanics which have their root in Bohr’s correspondence principle seem to offer a promising way of approach towards an understanding of the experimental results.”

The above two concepts were important ideas that motivated Raman scattering experiments. Importantly it highlights the jugalbandi between theoretical intuition with concrete experimental observations, which forms the bedrock of modern physics.

Newton famously mentioned about the discoveries he made by ‘standing on the shoulders of the giants’. Various people involved in creative pursuits including scientists acknowledge the fact that new ideas emerge from convergence/mutation of old ideas. The harder part of creativity in science, or for that matter any art form, is to choose the right ideas to combine so that the ’emergent’ new idea has greater value compared to the individual parts. In that sense, science is a great form of creative activity that not only combines old ideas to create new valuable ideas, but also transforms the perspective of the individual seed ideas. Thus ideas combine and evolve.

So let us combine good ideas and evolve. Happy Science Day !

Geo-fractal…somewhere over south India

I am always amazed to see fractal-like patterns….this one at a geographical scale…captured somewhere over south India..

I took the photo on my trip back to Pune from IIT Madras…

Thanks to IIT-M physics department for their invitation for colloquium…

Special thanks to Basudev Roy and Nirmala for hosting…. greatly enjoyed the discussion with many faculties and students..

In my talk, I mainly spoke on topics at the interface of statistical optics, Brownian motion and pattern formation..
Was delighted to see (and meet) Profs. Balki, Suresh Govindarajan Sunil Kumar Arnab Pal and many more in the audience.

The photo, retrospectively, captures the essence of the science discussed…

Soft Matter Optics – talk at ACS -India

About 2 years ago (22nd May 2020), when all the academic activities were online, I gave a talk on “Soft-Matter Optics: A Cabinet of Curiosities” organized by American Chemical Society as part of India Science Talks. Below is the embedded video of the online talk.

Link to ACS website can be found here.

In there, I give a broad overview of how interesting optical function can emerge from the complex world of soft matter. In addition to this, I have emphasized how optics can be harnessed to study structure and dynamics of soft-matter systems including colloids, liquid crystal and some biological matter. The target audience are new PhD students and anyone who is entering the field of light-soft matter interaction.

Hot Brownian Colloids – talk

On 19th Jan 2023, I gave a ~40 min talk on “Hot Brownian Colloids in Structured Optical Tweezers” in a very interesting conference on Frontiers in Non-Equilibrium Physics (FNEP) held at Institute of Mathematical Sciences, Chennai.

I mainly spoke about emergent Brownian dynamics of laser-heated colloids under optical confinement. Below is the link to the talk.

I concluded my talk quoting P W Anderson’s essay “More is Different

“The constructionist hypothesis breaks down when confronted with the twin difficulties of scale and complexity.  The behavior of large and complex aggregates of elementary particles, it turns out, is not to be understood in terms of a simple extrapolation of the properties of a few particles.

Instead, at each level of complexity entirely new properties appear, and the understanding of the new behaviors requires research which I think is as fundamental in its nature as any other.”

P.W. Anderson  ‘More is Different’
Science, 177, 4047 (1972)

More is not only different, but also wonderful !

My talk at ICTS

On 1st Dec 2022, I gave a talk on “Structured-Light Scattering : Implications in Momentum Space” as part of a discussion meeting on STRUCTURED LIGHT AND SPIN-ORBIT PHOTONICS held at International Center of Theoretical Sciences, Bangalore.

I mainly spoke about topological light scattering in the frame work of angular momentum of light and absorptive effects in optothermal tweezers created by structured light.

Below is the embedded video link to my talk. The playlist also has many other interesting talks related to the topic.

OAM + SAM -New paper from my lab

We have a new paper from our lab to appear in the journal : Laser & Photonics Reviews

on “Simultaneous detection of spin and orbital angular momentum of light through scattering from a single silver nanowire”

preprint version on arxiv :

Light can carry orbital angular momentum (OAM) and spin angular momentum (SAM). This momentum can be transferred to an object that is interacting with the light. What we show is the experimental proof of concomitant detection of OAM and SAM in the coherent light scattering signatures from a single, silver nanowire. Essentially, the nanowire acts like a slit, and scatters the light. During this scattering process, the distribution of light in momentum space gets altered according to the spin (polarization) and orbital (topological charge) state illuminating the nanowire.

A notable point is that unlike other (metamaterials) methods, this unambiguous detection scheme does not require sophisticated nanofabrication methods and is mainly founded on fundamental principles of vectorial light scattering in the momentum space.

This experimental work (with a good dose of theoretical optics) was mainly due to the sustained efforts of an outstanding PhD student in my lab : Diptabrata Paul (about to finish PhD !)

He had excellent support and inputs from our PhD alumni Deepak K Sharma (now a postdoc/research scientist at ASTAR, Singapore).

Going further, this study motivates some interesting questions, of which we are interested in exploring the direct transfer of OAM and SAM at sub-wavelength scale to nanoscale objects including (macro)molecules. This will have some interesting manifestation on optical forces and torques at sub-wavelength scale, and we intend to study them in detail. This can be studied in a unique set-up that we have built in our lab that combines nano-optical tweezers with momentum-space imaging microscope. Look out for some studies in this direction from our lab.

We will spend a lot time…in momentum space 🙂